Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell Signal ; 115: 111030, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163577

RESUMO

Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3ß substrate. GSK3ß interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3ß; we show that GSK3ß regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3ß regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3ß rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3ß and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3ß activation may in part contribute to Six1 overproduction in a subset of human cancers.


Assuntos
Proteínas de Ciclo Celular , Fatores de Transcrição , Humanos , Glicogênio Sintase Quinase 3 beta , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cdh1/metabolismo
2.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972769

RESUMO

The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.


Assuntos
Proteínas de Drosophila , Proteína Supressora de Tumor p53 , Animais , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835555

RESUMO

Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was significantly altered in the cdh1Δ mutant, with 43 up-regulated proteins and 92 down-regulated proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial organization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration. In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p, a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased Cyc1p levels and mitochondrial respiration in cdh1Δ cells. In agreement, Yap1p is transcriptionally more active in cdh1Δ cells and responsible for the higher oxidative stress tolerance of cdh1Δ mutant cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial metabolic remodelling through Yap1p activity.


Assuntos
Proteínas Cdh1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteômica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cdh1/metabolismo
4.
Protein Sci ; 32(3): e4572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691744

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.


Assuntos
Proteínas de Ciclo Celular , Simulação de Dinâmica Molecular , Proteínas Cdh1/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/química , Ciclo Celular
5.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548081

RESUMO

Ubiquitin-conjugating enzyme E2C (UBE2C) mediates ubiquitylation chain formation via the K11 linkage. While previous in vitro studies showed that UBE2C plays a growth-promoting role in cancer cell lines, the underlying mechanism remains elusive. Still unknown is whether and how UBE2C plays a promoting role in vivo. Here we report that UBE2C was indeed essential for growth and survival of lung cancer cells harboring Kras mutations, and UBE2C was required for KrasG12D-induced lung tumorigenesis, since Ube2c deletion significantly inhibited tumor formation and extended the lifespan of mice. Mechanistically, KrasG12D induced expression of UBE2C, which coupled with APC/CCDH1 E3 ligase to promote ubiquitylation and degradation of DEPTOR, leading to activation of mTORC signaling. Importantly, DEPTOR levels fluctuated during cell cycle progression in a manner dependent on UBE2C and CDH1, indicating their physiological connection. Finally, Deptor deletion fully rescued the tumor inhibitory effect of Ube2c deletion in the KrasG12D lung tumor model, indicating a causal role of Deptor. Taken together, our study shows that the UBE2C/CDH1/DEPTOR axis forms an oncogene and tumor suppressor cascade that regulates cell cycle progression and autophagy and validates UBE2C an attractive target for lung cancer associated with Kras mutations.


Assuntos
Neoplasias Pulmonares , Proteínas Supressoras de Tumor , Enzimas de Conjugação de Ubiquitina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Cdh1/metabolismo
6.
Sci Rep ; 12(1): 10489, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729193

RESUMO

The APC/C-Cdh1 ubiquitin ligase complex drives proteosomal degradation of cell cycle regulators and other cellular proteins during the G1 phase of the cycle. The complex serves as an important modulator of the G1/S transition and prevents premature entry into S phase, genomic instability, and tumor development. Additionally, mounting evidence supports a role for this complex in cell differentiation, but its relevance in erythropoiesis has not been addressed so far. Here we show, using mouse models of Cdh1 deletion, that APC/C-Cdh1 activity is required for efficient terminal erythroid differentiation during fetal development as well as postnatally. Consistently, Cdh1 ablation leads to mild but persistent anemia from birth to adulthood. Interestingly, loss of Cdh1 seems to affect both, steady-state and stress erythropoiesis. Detailed analysis of Cdh1-deficient erythroid populations revealed accumulation of DNA damage in maturing erythroblasts and signs of delayed G2/M transition. Moreover, through direct assessment of replication dynamics in fetal liver cells, we uncovered slow fork movement and increased origin usage in the absence of Cdh1, strongly suggesting replicative stress to be the underlying cause of DNA lesions and cell cycle delays in erythroblasts devoid of Cdh1. In turn, these alterations would restrain full maturation of erythroblasts into reticulocytes and reduce the output of functional erythrocytes, leading to anemia. Our results further highlight the relevance of APC/C-Cdh1 activity for terminal differentiation and underscore the need for precise control of replication dynamics for efficient supply of red blood cells.


Assuntos
Proteínas de Ciclo Celular , Eritroblastos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Cdh1/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , Fase G1 , Camundongos
7.
Leukemia ; 36(3): 834-846, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34635784

RESUMO

FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1+/- HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.


Assuntos
Anemia Aplástica/metabolismo , Proteínas Cdh1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Adulto , Idoso , Anemia Aplástica/genética , Animais , Proteínas Cdh1/genética , Células Cultivadas , Senescência Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Feminino , Haploinsuficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteólise , Ubiquitina/metabolismo , Ubiquitinação , Adulto Jovem
8.
Dev Biol ; 482: 55-66, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922934

RESUMO

The coincidence of cell cycle exit and differentiation has been described in a wide variety of stem cells and organisms for decades, but the causal relationship is still unclear due to the complicated regulation of the cell cycle. Here, we used the planarian Dugesia japonica since they may possess a simple cell cycle regulation in which Cdh1 is one of the factors responsible for exiting the cell cycle. When cdh1 was functionally inhibited, the planarians could not maintain their tissue homeostasis and could not regenerate their missing body parts. While the knockdown of cdh1 caused pronounced accumulation of the stem cells, the progenitor and differentiated cells were decreased. Further analyses indicated that the stem cells with cdh1 knockdown did not undergo differentiation even though they received ERK signaling activation as an induction signal. These results suggested that stem cells could not acquire differentiation competence without cell cycle exit. Thus, we propose that cell cycle regulation determines the differentiation competence and that cell cycle exit to G0 enables stem cells to undergo differentiation.


Assuntos
Proteínas Cdh1/genética , Ciclo Celular/fisiologia , Planárias/crescimento & desenvolvimento , Regeneração/genética , Animais , Proteínas Cdh1/metabolismo , Diferenciação Celular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Planárias/citologia , Interferência de RNA , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
Kaohsiung J Med Sci ; 37(11): 991-999, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370374

RESUMO

The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas Cdh1/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Cdh1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Signal ; 86: 110087, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271087

RESUMO

NADPH is a cofactor used by reactive oxygen species (ROS) scavenging enzymes to block ROS produced in cells. Recently, it was shown that in cancer cells, ROS progressively increases in tune to cell cycle leading to a peak in mitosis. Loss of IDH2 is known to cause severe oxidative stress in cell and mouse models as ROS increases in mitochondria. Therefore, we hypothesized that IDH2, a major NADPH-producing enzyme in mitochondria is ubiquitinated for ROS to increase in mitosis. To test this hypothesis, in cancer cells we examined IDH2 ubiquitination in mitosis and measured the ROS produced. We found that IDH2 is ubiquitinated in mitosis and on inhibiting anaphase-promoting complex/Cyclosome (APC/C) IDH2 was stabilized. Further, we observed that overexpressing APC/C coactivator CDH1 decreased IDH2, whereas depleting CDH1 decreased IDH2 ubiquitination. To understand the link between IDH2 ubiquitination and ROS produced in mitosis, we show that overexpressing mitochondria-targeted-IDH1 decreased ROS by increasing NADPH in IDH2 ubiquitinated cells. We conclude that APC/C CDH1 ubiquitinates IDH2, a major NADPH-producing enzyme in mitochondria contributing to ROS increase in mitosis. Based on our results, we suggest that mitosis can be a therapeutic window in mutant IDH2-linked pathologies.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular , Mitose , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Camundongos , Espécies Reativas de Oxigênio
11.
Exp Cell Res ; 404(2): 112632, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971196

RESUMO

Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Ciclo Celular/fisiologia , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Humanos , Proteína do Retinoblastoma/genética , Fatores de Transcrição/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118929, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33310066

RESUMO

Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética
13.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218190

RESUMO

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Hidrolases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hidrolases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
14.
Cell Death Dis ; 11(9): 804, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978372

RESUMO

The concept of breast-conserving surgery is a remarkable achievement of breast cancer therapy. Neoadjuvant chemotherapy is being used increasingly to shrink the tumor prior to surgery. Neoadjuvant chemotherapy is reducing the tumor size to make the surgery with less damaging to surrounding tissue and downstage locally inoperable disease to operable. However, non-effective neoadjuvant chemotherapy could increase the risks of delaying surgery, develop unresectable disease and metastatic tumor spread. The biomarkers for predicting the neoadjuvant chemotherapy effect are scarce in breast cancer treatment. In this study, we identified that FZR1 can be a novel biomarker for breast cancer neoadjuvant chemotherapy according to clinical patient cohort evaluation and molecular mechanism investigation. Transcriptomic data analysis indicated that the expression of FZR1 is correlated with the effect of neoadjuvant chemotherapy. Mechanistically, we demonstrate that FZR1 is pivotal to the chemotherapy drugs induced apoptosis and cell cycle arrest. FZR1 is involved in the stability of p53 by impairing the phosphorylation at ser15 site. We demonstrate that the expression of FZR1 detected by quantification of IHC can be an effective predictor of neoadjuvant chemotherapy in animal experiment and clinical patient cohort. To obtain more benefit for breast cancer patient, we propose that the FZR1 IHC score using at the clinical to predict the effect of neoadjuvant chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteínas Cdh1/metabolismo , Terapia Neoadjuvante/métodos , Adulto , Idoso , Animais , Proteínas Cdh1/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transfecção
15.
Biochem Biophys Res Commun ; 531(4): 566-572, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32811646

RESUMO

MAD2L2 (i.e. Rev7) is a central regulatory protein important in several processes, such as translesion synthesis (TLS), DNA damage response and mitosis. In TLS, MAD2L2 binds Rev3 to form Pol zeta (ζ) and promotes formation of the Pol ζ- REV1 complex allowing extension beyond distorted DNA structures. MAD2L2 is also part of the heterotetrameric shieldin complex that regulates DNA repair at sites of damage, where similarly to TLS, it bridges the interaction between SHLD2 and SHLD3. Lastly, during mitosis, MAD2L2 prevents premature activation of the anaphase promoting complex/cyclosome (APC/C), by sequestering its activator, CDH1. MAD2L2 exits in a 'closed' active conformation binding Rev3 and Rev1, or SHLD2 and SHLD3, and an 'open' inactive conformation, with no binding partners. Moreover, Pol ζ- REV1 forms a homodimer using a protein-protein interaction (PPI) domain comprised of a central αC helix, promoting Rev3-MAD2L2 interaction and C-terminus ß-sheets, enabling Rev1-MAD2L2 interaction. While the role of MAD2L2 in TLS is well established, molecular details regarding the CDH1-MAD2L2 interaction and MAD2L2 homodimerization are still missing. Here we demonstrate, in a human cell line, using a series of MAD2L2 mutants, that MAD2L2's C-terminus interface is essential for the CDH1-MAD2L2 binding as well as for homodimerization. In addition, we show that CDH1 interacts with MAD2L2 in a Rev1-like pattern, using the same C-terminus residues on MAD2L2 which Rev1 binds. Thus, identification of CDH1 as an additional Rev1-like binding protein strengthens the versatility of MAD2L2 as a regulatory protein and emphasizes the complexity involved in MAD2L2's preferential complex formation.


Assuntos
Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Mad2/metabolismo , Antígenos CD/genética , Sítios de Ligação , Proteínas Cdh1/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Nucleotidiltransferases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
16.
Sci Rep ; 10(1): 10094, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572094

RESUMO

FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK-phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form differentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells.


Assuntos
Proteínas Cdh1/metabolismo , Meiose/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Cdh1/fisiologia , Proteínas de Ciclo Celular/metabolismo , Técnicas de Introdução de Genes/métodos , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328643

RESUMO

In mitotic cells, DNA damage induces temporary G2 arrest via inhibitory Cdk1 phosphorylation. In contrast, fully grown G2-stage oocytes readily enter M phase immediately following chemical induction of DNA damage in vitro, indicating that the canonical immediate-response G2/M DNA damage response (DDR) may be deficient. Senataxin (Setx) is involved in RNA/DNA processing and maintaining genome integrity. Here we find that mouse oocytes deleted of Setx accumulate DNA damage when exposed to oxidative stress in vitro and during aging in vivo, after which, surprisingly, they undergo G2 arrest. Moreover, fully grown wild-type oocytes undergo G2 arrest after chemotherapy-induced in vitro damage if an overnight delay is imposed following damage induction. Unexpectedly, this slow-evolving DDR is not mediated by inhibitory Cdk1 phosphorylation but by APC-Cdh1-mediated proteolysis of the Cdk1 activator, cyclin B1, secondary to increased Cdc14B-dependent APC-Cdh1 activation and reduced Emi1-dependent inhibition. Thus, oocytes are unable to respond immediately to DNA damage, but instead mount a G2/M DDR that evolves slowly and involves a phosphorylation-independent proteolytic pathway.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , Oócitos/metabolismo , Proteólise , RNA Helicases/metabolismo , Animais , Caderinas , Células Cultivadas , DNA Helicases/deficiência , DNA Helicases/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enzimas Multifuncionais/deficiência , Enzimas Multifuncionais/genética , RNA Helicases/deficiência , RNA Helicases/genética
18.
Cell Death Dis ; 11(4): 298, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345958

RESUMO

APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFßTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Fase S/genética , Ubiquitina/metabolismo , Células HeLa , Humanos , Fosforilação , Transfecção
19.
Nucleic Acids Res ; 48(8): 4214-4229, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182338

RESUMO

Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Endorreduplicação , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Ciclina B/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Células HEK293 , Histonas/metabolismo , Humanos , Componente 6 do Complexo de Manutenção de Minicromossomo/genética , Regiões Promotoras Genéticas , Glândulas Salivares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitinação
20.
Semin Cancer Biol ; 67(Pt 2): 80-91, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165320

RESUMO

The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias/patologia , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Antígenos CD/genética , Carbamatos/farmacologia , Proteínas Cdc20/genética , Proteínas Cdh1/genética , Diaminas/farmacologia , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA